7,2

Exercices à rendre (facultatifs)

- · Possibilité d'upload vos solutions
- · corrigées par des AZ's
- . corrigo detaille publie sur Modle
- · marche nieux depuis un ordinateur. · inscrivet vous au test intermédiaire (< 11 nov)

Rappel: 447 la transformation Theorene cool: Soient vieW

(21,-, v,) ordonnes dans cut ordre

TIRP DWEV

(2) HO AVITOR POP vēribe

i) T'est lirealre (exercice)

ii) Im (T) = Vect by,,,, up}

(ii) Test injective &D &v,,,vp est lin independente

iv) Tost suijechie (+D {v,; , vp} engendrent W

V) Test bijectie (D (V1, Vp) est une basc (ordonnée) de W

COMBINAISON DINEATRE

$$W = V = \mathbb{R}^n \qquad (n \ge 1)$$

$$\vec{a}_1, \vec{a}_n \in V$$

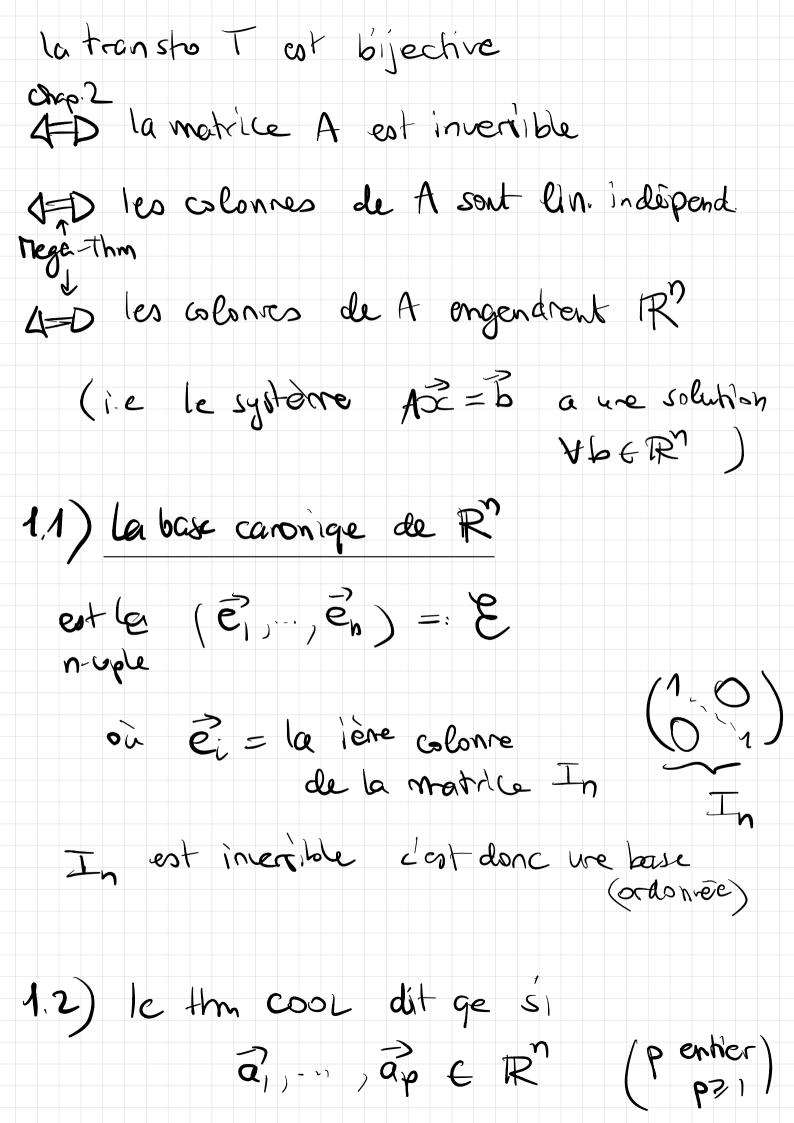
alors la transto C.O.O.L (dus ai) donne

$$T: \mathbb{R}^{n} \to \mathbb{R}^{n}$$

$$(\frac{\lambda_{1}}{\lambda_{n}}) \mapsto \lambda_{1} \overline{a_{1}} + \cdots + \lambda_{n} \overline{a_{n}}$$

or
$$\lambda_{n}\vec{a}_{n} + \cdots + \lambda_{n}\vec{a}_{n} = A \cdot \lambda$$

ou
$$A = (\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$$
 et $\lambda = (\hat{\lambda}_1)$



en posont		
en posant $A = \left(\overline{a}\right)$		
alors on a	1/	7
\vec{v}) $\{\vec{a}_1,\dots,\vec{a_p}\}$ som	40	A possède 1 piust par colonne
IIn. indezondants		donc p phots
ii) sa, , ap) engenda	eut R ^h 2	A possède 1 photographique
		starly n and
iii) (a,, ap) est une base onvenière	3 =D	A possode 1 pinot par ligh et par sonne
		(donc n=p)
suite de 4,4.8		
on a donc re re si a, a, a, e R	_ soll eng	pour déternimer On indep sendrent ir

A =
$$(\vec{a}_1 - \vec{a}_p)$$
 (\vec{a}_p) $(\vec{a}_p$

Morale (pour Rn) Il y a autant de bases ordonnées (a), an) de R qu'il y a de matrices merribles nx n en effet, si A E Maxa (R), est investible alors ses colonnes toment une base ordonnée alaprès le thu cool 12 (Suite) exemples de bases de P? avec n=1,2,3 n=1: une base de $R^1=R$ est un re R so } R= Vect Sr} base ord. de R2: v,= (a,) $v_2 = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ to det (a, b)

Morale géometriqe:

les bases de R2 corresp. aux parallelogrammes (non aplatis) de R2 ayant (0,0) comme sonnet

Pour R3 pareil: il y a outent de bases de R3 qu'il y a de paralle lépipo des aec sommet (0,0,0)

2) Base canonique de Ph

2.1 Pn = 3 pol de degre < n à seff rèels}

 $\varphi = (1, t, t^2, ..., t^n)$ = n+1 phyrônes

alors P est une bosc de Pn apprelèe la base avorige de Pn

Pern gérècle par Pn

Si {p, , , , pr} = 7 est me famille

de jolynômes p; EPn 30}

et si deg(pi) \deg(pj) \deg(pj)

abis 7 est lineair. Indépendante

2.2: V=P3 4 = 5 13+1, 13+t23

4 cot-elle 1/n. holip? solent $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tog R le polynôme $\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 = 0$ $\lambda_{1}(t^{3}+1)+\lambda_{2}(t^{3}+t)+\lambda_{3}(t^{3}+t^{2})=0$ (développer et regrosper selon prissances $(\lambda + \lambda_2 + \lambda_3)t^3 + \lambda_3t^2 + \lambda_2t + \lambda_4 = 0$ $\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 0 \\ \lambda_3 = 0 \\ \lambda_1 = 0 \\ \lambda_2 = 0 \end{cases}$ $40 \ \lambda_1 = \lambda_2 = \lambda_3 = 0$ donc lin indop.

3)
$$V = \prod_{2\times 2}(\mathbb{R})$$
 $f = \begin{cases} (10), (01), (00), (00) \end{cases}$

ect use base de $\prod_{2\times 2}(\mathbb{R})$

(ab) $\in \prod_{2\times 2}(\mathbb{R})$ on a bien

(ab) $= a(10) + b(01) + c(10) + d(01)$
 $\prod_{2\times 2}(\mathbb{R}) = \text{Vect} , \exists 1, \exists 2, \exists 3, \exists 4 \end{bmatrix}$

ex: monter quelle dont lin. Indep.

3.5) UC $\prod_{2\times 2}(\mathbb{R})$ Uspace de motifies trians supinhere

 $\begin{cases} (9a) \mid 4, h, d \in \mathbb{R} \end{cases}$
 $f = \begin{cases} \exists 1, \exists 2, \exists 4 \end{cases}$ base de V .

4) la source de tous les EV X un ensemble V=7(X;R) espred. pour tout x ex on definit $S_{\infty}: X \rightarrow \mathbb{R}$ (le Dirac en ∞) $S_{x} \in V$ $S_{y} = \begin{cases} 0 & \text{if } y \neq x \\ 1 & \text{if } y = x \end{cases}$ alors a femille D= SSoc |xex} est une base de FX;R) 5) (ex 4.48 suite) Si A E M (IR) et $T_A: \mathbb{R}^n \to \mathbb{R}^m$ $\overrightarrow{x} \mapsto A\overrightarrow{x}$

on exit

$$\vec{x} \in S$$
 of $\vec{x} = \begin{pmatrix} 2x_2 - x_4 \\ x_2 \\ 0 \end{pmatrix}$

$$\widehat{x} = x_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

ex : Base de
$$3\vec{x} \in \mathbb{R}$$
 | $2\vec{y} \propto i = 0$ }=H

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= \alpha, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\frac{7}{13} + \frac{7}{13} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

base de H : 39, 72, 75)

Base de Im (A) = Col (A):

indication: regerder les colonnes et juter

Les colonnes superflues

càd trouver le plus grand

nombre de colonnes linaitement

indépendantes

 $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 8 \end{pmatrix}$ $Col(A) = Vect \{ \vec{c}_1 \vec{c}_2 \vec{c}_3 \}$ $= Vect \{ \vec{c}_1 \vec{c}_3 \}$ $\vec{c}_2 = 2\vec{c}_1$ $\vec{c}_1 \vec{c}_2 \vec{c}_3 \vec{c}_3$ $\vec{c}_2 = 2\vec{c}_1$ $\vec{c}_3 \vec{c}_4 \vec{c}_5 \vec$

2, et c, sont lin, indup.

base de Im (A): $5\overline{c}_{1}, \overline{c}_{3}$

recette plus prédse la remaine pro-

S45 Syst de coord, et matrice de chargement de coord, Def. 4,5.1: Si $B = (\vec{b}_1, \vec{b}_p)$ est we base ord de Valors lappe T. RP -> V est bije chie Donc, YVEV, il existe un unique P-uplet (3) ERP tel ge $T\begin{pmatrix} \alpha_1 \\ \gamma_p \end{pmatrix} = \nabla \quad \text{ad} \quad \nabla = \lambda_1 b_1 + \cdots + \lambda_p b_2$ On appelle les Di, les composantes de v dans la base B et on Ecrit $[v]_{B} = \begin{pmatrix} \lambda_{1} \\ \lambda_{p} \end{pmatrix} \in \mathbb{R}^{p}$

(bef 4	r. 5 .1	suite)	7:1	Rr ->'	\checkmark	
Tet	ant k	bjechu	ejil	existe	_ we	trons	to interse
1	\	V ->	RP				
		びり	$[v]_{B}$				
Cette -	transfe	tos	appelée	<u> </u>	Coord	ornal once dans	3
ex 4.5	<u>}-2</u>	,					
2	> —	((2)),(1 b b	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$		o.o de R
5014	X =	$\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$) +	ouler		3	
	expri	no s la base	c canon	.ge			

Sol: on orerote
$$\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
 to q

$$\alpha = \lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3$$

and
$$(\frac{3}{2}) = \lambda_1 (\frac{3}{2}) + \lambda_2 (\frac{1}{3}) + \lambda_3 (\frac{1}{3})$$

système lineare
$$(\frac{1113}{2011}) (\frac{\lambda_1}{\lambda_2})$$

well ce augmentie
$$(\frac{1113}{2011}) (\frac{\lambda_1}{\lambda_3})$$

reduct
$$\lambda_1 = 4$$

augmentie
$$(\frac{1113}{2011}) (\frac{\lambda_1}{\lambda_2})$$

$$\lambda_2 = 3$$

donc $[5c]_p = (\frac{1}{3})$

and
$$(\frac{3}{2}) = 4(\frac{1}{2}) - 3(\frac{1}{2}) + 2(\frac{1}{2})$$

and
$$(\frac{3}{2}) = 4(\frac{1}{2}) - 3(\frac{1}{2}) + 2(\frac{1}{2})$$

Def. 4,5.3: Soit $B = (B_1, B_n)$ bi ER base ordonnée de Rn Solt $P_B = (\vec{b}, \vec{b}, \vec{b}$ = la natrice de changement de coordonnées de B à & = la base caronique de R qui a la propriété: VXEIR on a x = P. $[x]_B$ $x \in C(1)$ $x \in C$ Comme B est me base de R Rom 4.5.4 PB est inversible et donc

donne $x = P_B \cdot [x]_B$ $P_B \cdot [x]_B$ $P_B \cdot [x]_B$ PB x = [3]B

Pormule de drorg, de base de E vers B